Қысқаша көбейту формулаларын пайдаланып, көпмүшелерді көбейткіштерге жіктеу

Қысқаша көбейту формулаларын пайдаланып, көпмүшелерді көбейткіштерге жіктеу

2.2. Көпмүшені көбейткіштерге жіктеңіз.:

1) $x^6-1$

Шешуі

$${x^6} - 1 = {\left( {{x^3}} \right)^2} - 1 = \left( {{x^3} - 1} \right)\left( {{x^3} + 1} \right) = $$ $$ = (x - 1)(x + 1)\left( {{x^2} + x + 1} \right)\left( {{x^2} - x + 1} \right)$$

2) $x^3-x+2 x+2$

Шешуі

$${x^3} - x + 2x + 2 = \left( {{x^3} - x} \right) + (2x + 2) = x(x - 1)(x + 1) + 2(x + 1) = $$ $$ = (x + 1)(x(x - 1) + 2) = (x + 1)\left( {{x^2} - x + 2} \right)$$

3) $y^3-3 y^2+6 y-8$

Шешуі

$${y^3} - 3{y^2} + 6y - 8 = \left( {{y^3} - 8} \right) + \left( {6y - 3{y^2}} \right) = $$ $$ = (y - 2)\left( {{y^2} + 2y + 4} \right) - 3y(y - 2) = (y - 2)\left( {{y^2} - y + 4} \right)$$

4) $a^4-2 a^3+a^2-1$

Шешуі

$${a^4} - 2{a^3} + {a^2} - 1 = {a^2}\left( {{a^2} - 2a + 1} \right) - 1 = $$ $$ = {a^2}{(a - 1)^2} - 1 = (a(a - 1) - 1)(a(a - 1) + 1) = $$ $$ = \left( {{a^2} - a - 1} \right)\left( {{a^2} - a + 1} \right)$$

5) $a^2-2 a b+b^2-z^2$

Шешуі

$${a^2} - 2ab + {b^2} - {z^2} = {(a - b)^2} - {z^2} = (a - b - z)(a - b + z)$$

6) $a-3 b+9 b^2-a^2$

Шешуі

$$a - 3b + 9{b^2} - {a^2} = (a - 3b) - (a - 3b)(a + 3b) = (a - 3b)(1 - a - 3b)$$

7) $64(2-5 a)^2-25(6 a-5)^2$

Шешуі

$$64{(2 - 5a)^2} - 25{(6a - 5)^2} = {\left( {8(2 - 5a)} \right)^2} - {\left( {5(6a - 5)} \right)^2} = $$ $$ = \left( {8(2 - 5a) + 5(6a - 5)} \right)\left( {8(2 - 5a) - 5(6a - 5)} \right) = $$ $$ = ( - 9 - 10a)( - 70a + 41) = (10a + 9)(70a - 41)$$

8) $a^2 b+b^2 c+a c^2-a b^2-b c^2-a^2 c$

Шешуі

$${a^2}b + {b^2}c + a{c^2} - a{b^2} - h{c^2} - {a^2}c = $$ $$ = \left( {{a^2}b - {a^2}c} \right) + \left( {{b^2}c - b{c^2}} \right) + \left( {a{c^2} - a{b^2}} \right) = $$ $$ = {a^2}(b - c) + bc(b - c) - a(b - c)(b + c) = $$ $$ = (b - c)\left( {{a^2} + bc - ab - ac} \right) = $$ $$ = (b - c)\left( {a(a - c) - b(a - c)} \right) = (b - c)(a - c)(a - b)$$

9) $4 x^2-4 x^3+12 x^2 y-9 y^2-9 x y^2$

Шешуі

$$4{x^2} - 4{x^3} + 12{x^2}y - 9{y^2} - 9x{y^2} = \left( {4{x^2} - 9{y^2}} \right) - \left( {4{x^3} - 12{x^2}y + 9x{y^2}} \right) = $$ $$ = (2x - 3y)(2x + 3y) - x{(2x - 3y)^2} = (2x - 3y)\left( {2x + 3y - 2{x^2} + 3xy} \right)$$

10) $27 c^3-3 c^2+2 c-8$

Шешуі

$$27{c^3} - 3{c^2} + 2c - 8 = \left( {27{c^3} - 8} \right) - \left( {3{c^2} - 2c} \right) = $$ $$ = (3c - 2)\left( {9{c^2} + 6c + 4} \right) - c(3c - 2) = (3c - 2)\left( {9{c^2} + 5c + 4} \right)$$



Осы тақырыптағы посттар

Пікір қалдыру

Сіздің электронды почтаңыз жарияланбайды, Міндетті жолдарды толтырып шығыңыз.