Квадрат үшмүшені көбейткіштерге жіктеу

Квадрат үшмүшені көбейткіштерге жіктеу

Егер $x_1$ және $x_2$ сандары — $ax^2+bx+c$ көпмүшесінің түбірлері болса, онда мына теңдік орындалады: $$ax^2+bx+c=a(x-x_1)(x-x_2)$$

2.3. Көпмүшені көбейткіштерге жіктеңіз:

1) $6 x^2-x-2$

Шешуі

Теңдеуді шешеміз: $6 x^2-x-2=0$ $${x_1} = \frac{2}{3},\quad {x_2} = - \frac{1}{2}$$ $$ = 3\left( {x - \frac{2}{3}} \right) \cdot 2\left( {x + \frac{1}{2}} \right) = (3x - 2)(2x + 1)$$

2) $x^3-x-2 x-2$

Шешуі

$${x^3} - x - 2x - 2 = \left( {{x^3} - x} \right) - (2x + 2) = x\left( {{x^2} - 1} \right) - 2(x + 1) = $$ $$ = x(x - 1)(x + 1) - 2(x + 1) = (x + 1)\left( {{x^2} - x - 2} \right) = $$ $$ = \left\| \begin{array}{l}{x^2} - x - 2 = 0\\{x_1} = 2,\quad {x_2} = - 1\end{array} \right\| = (x + 1)(x + 1)(x - 2) = {(x + 1)^2}(x - 2)$$

3) $4-7 x - 2 x^2$

Шешуі

$$4 - 7x - 2{x^2} = - \left( {2{x^2} + 7x - 4} \right) = \left\| {\begin{array}{*{20}{l}}{2{x^2} + 7x - 4 = 0}\\{{x_1} = - 4;{x_2} = \frac{1}{2}}\end{array}} \right\| = $$ $$ = - 2(x + 4)\left( {x - \frac{1}{2}} \right) = (x + 4)(1 - 2x)$$

4) $9 x^2-30 x y+24 y^2$

Шешуі

$9 x^2-30 x y+24 y^2=0$ теңдеуін $x$-ке қатысты шешеміз: $$a = 9,\quad b = - 30y,\quad c = 24{y^2}$$ $$D = {b^2} - 4ac = {( - 30y)^2} - 4 \cdot 9 \cdot 24{y^2} = 900{y^2} - 864{y^2} = 36{y^2}$$ $${x_1} = \frac{{30y + 6y}}{{18}} = 2y,\quad {x_2} = \frac{{30y - 6y}}{{18}} = \frac{4}{3}y$$ $$9{x^2} - 30xy + 24{y^2} = 9(x - 2y)\left( {x - \frac{4}{3}y} \right) = $$ $$ = (x - 2y) \cdot 9\left( {x - \frac{4}{3}y} \right) = (x - 2y)(9x - 12y)$$

5) $a^4+a^2-2$

Шешуі

$${a^4} + {a^2} - 2 = \left| {\begin{array}{*{20}{l}}{{a^2} = x}\\{{x^2} + x - 2 = 0}\\{{x_1} = - 2,\quad {x_2} = 1}\end{array}} \right| = (x + 2)(x - 1) = $$ $$ = \left( {{a^2} + 2} \right)\left( {{a^2} - 1} \right) = \left( {{a^2} + 2} \right)(a - 1)(a + 1)$$



Осы тақырыптағы посттар

Пікір қалдыру

Сіздің электронды почтаңыз жарияланбайды, Міндетті жолдарды толтырып шығыңыз.