Иррационал өрнектер (Сканави (А) 2.1-2.15)

()

 +/- Есептің жауабын көрсету/көрсетпеу.

▲/▼Жауап орнын жасыру/шығару

   ×   Сұрақты алып тастау.

Иррационал өрнектерді ықшамдаңыз.

№ 2.1 Өрнекті ықшамдаңыз: $\dfrac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }}:\dfrac{1}{{{x^2} — \sqrt x }}$

Шешуі: ММЖ: $0 \lt x \ne 1$ $${\dfrac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }}:\dfrac{1}{{{x^2} — \sqrt x }} = \dfrac{{\sqrt x + 1}}{{\sqrt x (x + \sqrt x + 1)}} \cdot \dfrac{{\sqrt x (x\sqrt x — 1)}}{1} = }$$ $${ = \dfrac{{(\sqrt x + 1)(\sqrt x — 1)}}{{\sqrt x (x + \sqrt x + 1)(\sqrt x — 1)}} \cdot \dfrac{{\sqrt x (x\sqrt x — 1)}}{1} = \dfrac{{x — 1}}{{\sqrt x (x\sqrt x — 1)}} \times }$$ $${ \times \dfrac{{\sqrt x (x\sqrt x — 1)}}{1} = x — 1}$$

№ 2.2 Өрнекті ықшамдаңыз: $\left( {{{(\sqrt[4]{p} — \sqrt[4]{q})}^{ — 2}} + {{(\sqrt[4]{p} + \sqrt[4]{q})}^{ — 2}}} \right):\dfrac{{\sqrt p + \sqrt q }}{{p — q}}$

Шешуі: ММЖ: $p \ne q$ $${ = \left( {\dfrac{1}{{{{(\sqrt[4]{p} — \sqrt[4]{q})}^2}}} + \dfrac{1}{{{{(\sqrt[4]{p} + \sqrt[4]{q})}^2}}}} \right) \times \dfrac{{p — q}}{{\sqrt p + \sqrt q }} = }$$ $${ = \dfrac{{{{(\sqrt[4]{p} + \sqrt[4]{q})}^2} + {{(\sqrt[4]{p} — \sqrt[4]{q})}^2}}}{{{{(\sqrt p — \sqrt q )}^2}}} \cdot \dfrac{{(\sqrt p — \sqrt q )(\sqrt p + \sqrt q )}}{{\sqrt p + \sqrt q }} = }$$ $${ = \dfrac{{\sqrt p + 2\sqrt[4]{{pq}} + \sqrt q + \sqrt p — 2\sqrt[4]{{pq}} + \sqrt q }}{{\sqrt p — \sqrt q }} = \dfrac{{2(\sqrt p + \sqrt q )}}{{\sqrt p — \sqrt q }} = }$$ $${ = \dfrac{{2(\sqrt p + \sqrt q )(\sqrt p + \sqrt q )}}{{(\sqrt p — \sqrt q )(\sqrt p + \sqrt q )}} = \dfrac{{2{{(\sqrt p + \sqrt q )}^2}}}{{p — q}}}$$

№ 2.3Өрнекті ықшамдаңыз: $\dfrac{{\left( {\sqrt {{a^2} + a\sqrt {{a^2} — {b^2}} } } \right) — {{\left( {\sqrt {{a^2} — a\sqrt {{a^2} — {b^2}} } } \right)}^2}}}{{2\sqrt {{a^3}b} }} \cdot \left( {\sqrt {\dfrac{a}{b}} + \sqrt {\dfrac{b}{a}} — 2} \right),\,\,(a \gt b \gt 0)$

Шешуі: $${X = \dfrac{{\left( {\sqrt {\left. {{a^2} + a\sqrt {{a^2} — {b^2}} } \right)} — {{\left( {\sqrt {{a^2} — a\sqrt {{a^2} — {b^2}} } } \right)}^2}} \right.}}{{2\sqrt {{a^3}b} }} = }$$ $${ = \dfrac{{{{\left( {\sqrt {a\left( {a + \sqrt {{a^2} — {b^2}} } \right)} — \sqrt {a\left( {a — \sqrt {{a^2} — {b^2}} } \right)} } \right)}^2}}}{{2a\sqrt {ab} }} = }$$ $${ = \dfrac{{{{\left( {\sqrt a \left( {\sqrt {a + \sqrt {{a^2} — {b^2}} } — \sqrt {a — \sqrt {{a^2} — {b^2}} } } \right)} \right)}^2}}}{{2a\sqrt {ab} }} = }$$ $${ = \dfrac{{a\left( {a + \sqrt {{a^2} — {b^2}} — 2\sqrt {{a^2} — {a^2} + {b^2}} + a — \sqrt {{a^2} — {b^2}} } \right)}}{{2a\sqrt {ab} }} = \dfrac{{2a — 2b}}{{2\sqrt {ab} }} = \dfrac{{a — b}}{{\sqrt {ab} }}}$$ $${Y = \sqrt {\dfrac{a}{b}} + \sqrt {\dfrac{b}{a}} — 2 = \dfrac{{\sqrt a }}{{\sqrt b }} + \dfrac{{\sqrt b }}{{\sqrt a }} — 2 = \dfrac{{{{(\sqrt a )}^2} — 2\sqrt {ab} + {{(\sqrt b )}^2}}}{{\sqrt {ab} }} = \dfrac{{{{(\sqrt a — \sqrt b )}^2}}}{{\sqrt {ab} }}}$$ онда $${X:Y = \dfrac{{a — b}}{{\sqrt {ab} }}:\dfrac{{{{(\sqrt a — \sqrt b )}^2}}}{{\sqrt {ab} }} = \dfrac{{(a — b) \cdot \sqrt {ab} }}{{\sqrt {ab} \cdot {{(\sqrt a — \sqrt b )}^2}}} = \dfrac{{a — b}}{{{{(\sqrt a — \sqrt b )}^2}}} = }$$ $${ = \dfrac{{(a — b){{(\sqrt a + \sqrt b )}^2}}}{{{{(\sqrt a — \sqrt b )}^2}{{(\sqrt a + \sqrt b )}^2}}} = \dfrac{{(a — b){{(\sqrt a + \sqrt b )}^2}}}{{{{((\sqrt a — \sqrt b )(\sqrt a + \sqrt b ))}^2}}} = \dfrac{{(a — b){{(\sqrt a + \sqrt b )}^2}}}{{{{(a — b)}^2}}} = }$$ $${ = \dfrac{{{{(\sqrt a + \sqrt b )}^2}}}{{a — b}}}$$

№ 2.4 Есептеңіз: ${\left( {\dfrac{{{{(a + b)}^{ — n/4}} \cdot {c^{1/2}}}}{{{a^{2 — n}}{b^{ — 3/4}}}}} \right)^{4/3}}:{\left( {\dfrac{{{b^3}{c^4}}}{{{{(a + b)}^{2n}}{a^{16 — 8n}}}}} \right)^{1/6}};b = 0,04$

Шешуі: ММЖ: $a \ne — b = — 0,04$ $$X = {\left( {\dfrac{{{{(a + b)}^{ — n/4}} \cdot {c^{1/2}}}}{{{a^{2 — n}}{b^{ — 3/4}}}}} \right)^{4/3}} = \dfrac{{{{(a + b)}^{ — n/3}} \cdot {c^{2/3}}}}{{{a^{(8 — 4n)/3}}{b^{ — 1}}}} = \dfrac{{b \cdot {c^{2/3}}}}{{{a^{(8 — 4n)/3}} \cdot {{(a + b)}^{n/3}}}}$$ $$Y = {\left( {\dfrac{{{b^3}{c^4}}}{{{{(a + b)}^{2n}}{a^{16 — 8n}}}}} \right)^{1/6}} = \dfrac{{{b^{1/2}} \cdot {c^{2/3}}}}{{{{(a + b)}^{n/3}} \cdot {a^{(8 — 4n/3)}}}}$$ Онда $$X:Y = \dfrac{{b \cdot {c^{2/3}}}}{{{a^{(8 — 4n)/3}} \cdot {{(a + b)}^{n/3}}}}:\dfrac{{{b^{1/2}} \cdot {c^{2/3}}}}{{{{(a + b)}^{n/3}} \cdot {a^{(8 — 4n)/3}}}} = $$ $$ = \dfrac{{b \cdot {c^{2/3}} \cdot {{(a + b)}^{n/3}} \cdot {a^{(8 — 4n)/3}}}}{{{a^{(8 — 4n)/3}} \cdot {{(a + b)}^{n/3}} \cdot {b^{1/2}} \cdot {c^{2/3}}}} = {b^{1/2}} = {(0,04)^{1/2}} = \sqrt {0,04} = 0,2.$$

№ 2.5 Өрнекті ықшамдаңыз: $\dfrac{{2{x^{ — 1/3}}}}{{{x^{2/3}} — 3{x^{ — 1/3}}}} — \dfrac{{{x^{2/3}}}}{{{x^{5/3}} — {x^{2/3}}}} — \dfrac{{x + 1}}{{{x^2} — 4x + 3}}$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{x \ne 0}\\{x \ne 1}\\{x \ne 3}\end{array}} \right.$ $${\dfrac{{2{x^{ — 1/3}}}}{{{x^{2/3}} — 3{x^{ — 1/3}}}} — \dfrac{{{x^{2/3}}}}{{{x^{5/3}} — {x^{2/3}}}} — \dfrac{{x + 1}}{{{x^2} — 4x + 3}} = \dfrac{{2{x^{ — 1/3}}}}{{{x^{ — 1/3}}(x — 3)}} — }$$ $${ — \dfrac{{{x^{2/3}}}}{{{x^{2/3}}(x — 1)}} — \dfrac{{x + 1}}{{(x — 1)(x — 3)}} = \dfrac{2}{{x — 3}} — \dfrac{1}{{x — 1}} — \dfrac{{x + 1}}{{(x — 1)(x — 3)}} = }$$ $${ = \dfrac{{2x — 2 — x + 3 — x — 1}}{{(x — 1)(x — 3)}} = \dfrac{0}{{(x — 1)(x — 3)}} = 0}$$

№ 2.6 Өрнекті ықшамдаңыз: $\dfrac{{{{(\sqrt a + \sqrt b )}^2} — 4b}}{{(a — b):\left( {\sqrt {\dfrac{1}{b}} + 3\sqrt {\dfrac{1}{a}} } \right)}}:\dfrac{{a + 9b + 6\sqrt {ab} }}{{\dfrac{1}{{\sqrt b }} + \dfrac{1}{{\sqrt a }}}}$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{a \ne b}\\{a \gt 0}\\{b \gt 0}\end{array}} \right.$ $$\dfrac{{{{(\sqrt a + \sqrt b )}^2} — 4b}}{{(a — b):\left( {\sqrt {\dfrac{1}{b}} + 3\sqrt {\dfrac{1}{a}} } \right)}}:\dfrac{{a + 9b + 6\sqrt {ab} }}{{\dfrac{1}{{\sqrt b }} + \dfrac{1}{{\sqrt a }}}} = \dfrac{{a + 2\sqrt {ab} + b — 4b}}{{(\sqrt a — \sqrt b )(\sqrt a + \sqrt b ):\left( {\dfrac{1}{{\sqrt b }} + \dfrac{3}{{\sqrt a }}} \right)}} \div $$ $$\dfrac{{{{(\sqrt a + 3\sqrt b )}^2}}}{{\dfrac{{\sqrt a + \sqrt b }}{{\sqrt {ab} }}}} = \dfrac{{a + 2\sqrt {ab} — 3b}}{{(\sqrt a — \sqrt b )(\sqrt a + \sqrt b ):\dfrac{{\sqrt a + 3\sqrt b }}{{\sqrt {ab} }}}}:\dfrac{{{{(\sqrt a + 3\sqrt b )}^2}\sqrt {ab} }}{{(\sqrt a + \sqrt b )}} = $$ $${ = \dfrac{{(a + 2\sqrt {ab} — 3b)(\sqrt a + 3\sqrt b )(\sqrt a + \sqrt b )}}{{(\sqrt a — \sqrt b )(\sqrt a + \sqrt b )\sqrt {ab} {{(\sqrt a + 3\sqrt b )}^2}\sqrt {ab} }} = }$$ $${ = \dfrac{{a + 2\sqrt {ab} — 3b}}{{ab(a — \sqrt {ab} + 3\sqrt {ab — 3b} )}} = \dfrac{1}{{ab}}}$$

№ 2.7 Өрнекті ықшамдаңыз: $\dfrac{{{{(\sqrt[4]{m} + \sqrt[4]{n})}^2} + {{(\sqrt[4]{m} — \sqrt[4]{n})}^2}}}{{2(m — n)}}:\dfrac{1}{{\sqrt {{m^3}} — \sqrt {{n^3}} }} — 3\sqrt {mn} $

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{m \ne n}\\{m \gt 0}\\{n \gt 0.}\end{array}} \right.$ $${\dfrac{{{{(\sqrt[4]{m} + \sqrt[4]{n})}^2} + {{(\sqrt[4]{m} — \sqrt[4]{n})}^2}}}{{2(m — n)}}:\dfrac{1}{{\sqrt {{m^3}} — \sqrt {{n^3}} }} — 3\sqrt {mn} = }$$ $${ = \dfrac{{\sqrt m + 2\sqrt[4]{{mn}} + \sqrt n + \sqrt m — 2\sqrt[4]{{mn}} + \sqrt n }}{{2(\sqrt m — \sqrt n )(\sqrt m + \sqrt n )}} \times }$$ $${ \times \dfrac{{(\sqrt m — \sqrt n )\left( {{{(\sqrt m )}^2} + \sqrt {mn} + {{(\sqrt n )}^2}} \right)}}{1} — 3\sqrt {mn} = }$$ $${ = \dfrac{{2(\sqrt m + \sqrt n )(\sqrt m — \sqrt n )\left( {{{(\sqrt m )}^2} + \sqrt {mn} + {{(\sqrt n )}^2}} \right)}}{{2(\sqrt m — \sqrt n )(\sqrt m + \sqrt n )}} — 3\sqrt {mn} = }$$ $${ = {{(\sqrt m )}^2} + \sqrt {mn} + {{(\sqrt n )}^2} — 3\sqrt {mn} = {{(\sqrt m )}^2} — }$$ $${ — 2\sqrt {mn} + {{(\sqrt n )}^2} = {{(\sqrt m — \sqrt n )}^2}}$$

№ 2.8 Өрнекті ықшамдаңыз: ${\left( {\left( {\dfrac{{{2^{3/2}} + 27{y^{3/5}}}}{{\sqrt 2 + 3\sqrt[5]{y}}} + 3\sqrt[{10}]{{32{y^2}}} — 2} \right) \cdot {3^{ — 2}}} \right)^5}$

Шешуі: ММЖ: $\sqrt 2 + 3\sqrt[5]{y} \ne 0, \Leftrightarrow y \ne — {\left( {\dfrac{{\sqrt 2 }}{3}} \right)^5}$ $${\left( {\left( {\dfrac{{{2^{3/2}} + 27{y^{3/5}}}}{{\sqrt 2 + 3\sqrt[5]{y}}} + 3\sqrt[{10}]{{32{y^2}}} — 2} \right) \cdot {3^{ — 2}}} \right)^5} = $$ $$ = {\left( {\left( {\dfrac{{{{(\sqrt 2 )}^3} + {{(3\sqrt[5]{y})}^3}}}{{\sqrt 2 + 3\sqrt[5]{y}}} + 3\sqrt 2 \sqrt[5]{y} — 2} \right) \cdot \dfrac{1}{9}} \right)^5} = $$ $$ = {\left( {\left( {\dfrac{{\left. {(\sqrt 2 + 3\sqrt[5]{y}){{(\sqrt 2 )}^2} — 3\sqrt 2 \sqrt[5]{y} + {{(3\sqrt[5]{y})}^2}} \right)}}{{\sqrt 2 + 3\sqrt[5]{y}}} + 3\sqrt 2 \sqrt[5]{y} — 2} \right) \cdot \dfrac{1}{9}} \right)^5} = $$ $$ = {\left( {\left( {2 + 9\sqrt[5]{{{y^2}}} — 2} \right) \cdot \dfrac{1}{9}} \right)^5} = {\left( {9\sqrt[5]{{{y^2}}} \cdot \dfrac{1}{9}} \right)^5} = {\left( {\sqrt[5]{{{y^2}}}} \right)^5} = {y^2}$$

№ 2.9 Өрнекті ықшамдаңыз: ${\dfrac{{2\sqrt {1 + \dfrac{1}{4}{{\left( {\sqrt {\dfrac{1}{t}} — \sqrt t } \right)}^2}} }}{{\sqrt {1 + \dfrac{1}{4}{{\left( {\sqrt {\dfrac{1}{t}} — \sqrt t } \right)}^2}} — \dfrac{1}{2}\left( {\sqrt {\dfrac{1}{t}} — \sqrt t } \right)}}}$

Шешуі: ММЖ: $0 \lt t \ne 1$ $${\dfrac{{2\sqrt {1 + \dfrac{1}{4}{{\left( {\sqrt {\dfrac{1}{t}} — \sqrt t } \right)}^2}} }}{{\sqrt {1 + \dfrac{1}{4}{{\left( {\sqrt {\dfrac{1}{t}} — \sqrt t } \right)}^2}} — \dfrac{1}{2}\left( {\sqrt {\dfrac{1}{t}} — \sqrt t } \right)}} = \dfrac{{2\sqrt {1 + \dfrac{1}{4}\left( {\dfrac{1}{t} — 2 + t} \right)} }}{{\sqrt {1 + \dfrac{1}{4}\left( {\dfrac{1}{t} — 2 + t} \right) — \dfrac{1}{2}\left( {\dfrac{1}{{\sqrt t }} — \sqrt t } \right)} }} = }$$ $${ = \dfrac{{2\sqrt {1 + \dfrac{1}{4} \cdot \dfrac{{1 — 2t + {t^2}}}{t}} }}{{\sqrt {1 + \dfrac{1}{4} \cdot \dfrac{{1 — 2t + {t^2}}}{t}} — \dfrac{1}{2} \cdot \dfrac{{1 — t}}{{\sqrt t }}}} = \dfrac{{2\sqrt {\dfrac{{4t + 1 — 2t + {t^2}}}{{4t}}} }}{{\sqrt {\dfrac{{4t + 1 — 2t + {t^2}}}{{4t}}} — \dfrac{{1 — t}}{{2\sqrt t }}}} = }$$ $${ = \dfrac{{\sqrt {\dfrac{{1 + 2t + {t^2}}}{t}} }}{{\dfrac{1}{2}\sqrt {\dfrac{{1 + 2t + {t^2}}}{t}} — \dfrac{{1 — t}}{{2\sqrt t }}}} = \dfrac{{\dfrac{{1 + t}}{{\sqrt t }}}}{{\dfrac{{1 + t}}{{2\sqrt t }} — \dfrac{{1 — t}}{{2\sqrt t }}}} = \dfrac{{\dfrac{{1 + t}}{{\sqrt t }}}}{{\dfrac{{1 + t — 1 + t}}{{2\sqrt t }}}} = \dfrac{{\dfrac{{1 + t}}{{\sqrt t }}}}{{\dfrac{{2t}}{{2\sqrt t }}}} = \dfrac{{1 + t}}{t}}$$

№ 2.10 Өрнекті ықшамдаңыз: $\dfrac{{1 + \dfrac{2}{{\sqrt {t + 4} }}}}{{2 — \sqrt {t + 4} }} + \sqrt {t + 4} + \dfrac{4}{{\sqrt {t + 4} }}$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{t + 4 \gt 0,}\\{2 — \sqrt {t + 4} \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{lllllllllllllll}{t \gt — 4,}\\{t \ne 0.}\end{array}} \right.} \right.$ $$1 + \dfrac{2}{{\sqrt {t + 4} }} + \sqrt {t + 4} + \dfrac{4}{{\sqrt {t + 4} }} = t \cdot \dfrac{{\dfrac{{\sqrt {t + 4} + 2}}{{\sqrt {t + 4} }}}}{{2 — \sqrt {t + 4} }} + \dfrac{{{{(\sqrt {t + 4} )}^2} + 4}}{{\sqrt {t + 4} }} = $$ $$ = t \cdot \dfrac{{\sqrt {t + 4} + 2}}{{\sqrt {t + 4} (2 — \sqrt {t + 4} }} + \dfrac{{{{(\sqrt {t + 4} )}^2} + 4}}{{\sqrt {t + 4} }} = n$$ $${ = \dfrac{{t(\sqrt {t + 4} + 2)(2 + \sqrt {t + 4} )}}{{\sqrt {t + 4} (2 — \sqrt {t + 4} )(2 + \sqrt {t + 4} )}} + \dfrac{{{{(\sqrt {t + 4} )}^2} + 4}}{{\sqrt {t + 4} }} = }$$ $${ = \dfrac{{t{{(\sqrt {t + 4} + 2)}^2}}}{{\sqrt {t + 4} (4 — t — 4)}} + \dfrac{{{{(\sqrt {t + 4} )}^2} + 4}}{{\sqrt {t + 4} }} = }$$ $${ = \dfrac{{ — (t + 4 + 4\sqrt {t + 4} + 4)}}{{\sqrt {t + 4} }} + \dfrac{{t + 4 + 4}}{{\sqrt {t + 4} }} = }$$ $${ = \dfrac{{ — t — 4\sqrt {t + 4} — 8 + t + 8}}{{\sqrt {t + 4} }} = — \dfrac{{4\sqrt {t + 4} }}{{\sqrt {t + 4} }} = — 4}$$

№ 2.11 Өрнекті ықшамдаңыз: ${\left( {\dfrac{{1 + \sqrt x }}{{\sqrt {1 + x} }} — \dfrac{{\sqrt {1 + x} }}{{1 + \sqrt x }}} \right)^2} — {\left( {\dfrac{{1 — \sqrt x }}{{\sqrt {1 + x} }} — \dfrac{{\sqrt {1 + x} }}{{1 — \sqrt x }}} \right)^2}$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{1 + x \ge 0,}\\{x \ge 0,}\\{1 — \sqrt x \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{lllllllllllllll}{x \ge 0}\\{x \ne 1}\end{array}} \right.} \right.$ $${{{\left( {\dfrac{{1 + \sqrt x }}{{\sqrt {1 + x} }} — \dfrac{{\sqrt {1 + x} }}{{1 + \sqrt x }}} \right)}^2} — {{\left( {\dfrac{{1 — \sqrt x }}{{\sqrt {1 + x} }} — \dfrac{{\sqrt {1 + x} }}{{1 — \sqrt x }}} \right)}^2} = {{\left( {\dfrac{{{{(1 + \sqrt x )}^2} — {{(\sqrt {1 + x} )}^2}}}{{\sqrt {1 + x} (1 + \sqrt x )}}} \right)}^2} — }$$ $${ — {{\left( {\dfrac{{{{(1 — \sqrt x )}^2} — {{(\sqrt {1 + x} )}^2}}}{{\sqrt {1 + x(1 — \sqrt x )} }}} \right)}^2} = {{\left( {\dfrac{{1 + 2\sqrt x + x — 1 — x}}{{\sqrt {1 + x} (1 + \sqrt x )}}} \right)}^2} — }$$ $${{{\left. { — {{\left( {\dfrac{{1 — 2\sqrt x + x — 1 — x}}{{\sqrt {1 + x} {{(1 — \sqrt x )}^2}}}} \right)}^2} = \left( {\dfrac{{2\sqrt x }}{{\sqrt {1 + x} (1 + \sqrt x }}} \right)} \right)}^2} — }$$ $${ — {{\left( {\dfrac{{ — 2\sqrt x }}{{\sqrt {1 + x} (1 — \sqrt x )}}} \right)}^2} = \dfrac{{4x}}{{{{(\sqrt {1 + x} (1 + \sqrt x ))}^2}}} — }$$ $${ — \dfrac{{4x}}{{{{(\sqrt {1 + x} (1 — \sqrt x ))}^2}}} = \dfrac{{4x\left( {{{(1 — \sqrt x )}^2} — {{(1 + \sqrt x )}^2}} \right)}}{{{{(\sqrt {1 + x} (1 + \sqrt x )(1 — \sqrt x ))}^2}}} = }$$ $${ = \dfrac{{4x(1 — 2\sqrt x + x — 1 — 2\sqrt x — x)}}{{(1 + x){{(1 — x)}^2}}} = \dfrac{{ — 16x\sqrt x }}{{(1 + x)(1 — x)(1 — x)}} = \dfrac{{16x\sqrt x }}{{\left( {1 — {x^2}} \right)(x — 1)}}}$$

№ 2.12 Өрнекті ықшамдаңыз: $\dfrac{{x — 1}}{{x + {x^{1/2}} + 1}}:\dfrac{{{x^{0,5}} + 1}}{{{x^{1,5}} — 1}} + \dfrac{2}{{{x^{ — 0,5}}}}$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{x \gt 0}\\{x \ne 1}\end{array}} \right.$ $${\dfrac{{x — 1}}{{x + {x^{1/2}} + 1}}:\dfrac{{{x^{0,5}} + 1}}{{{x^{1,5}} — 1}} + \dfrac{2}{{{x^{ — 0,5}}}} = \dfrac{{\left( {{x^{1/2}} — 1} \right)\left( {{x^{1/2}} + 1} \right)}}{{x + {x^{1/2}} + 1}} \cdot \dfrac{{{{\left( {{x^{1/2}}} \right)}^3} — 1}}{{{x^{1/2}} + 1}} + \dfrac{2}{{\dfrac{1}{{{x^{1/2}}}}}} = }$$ $${ = \dfrac{{\left( {{x^{1/2}} — 1} \right)\left( {{x^{1/2}} — 1} \right)\left( {x + {x^{1/2}} + 1} \right)}}{{x + {x^{1/2}} + 1}} + 2{x^{1/2}} = {{\left( {{x^{1/2}} — 1} \right)}^2} + 2{x^{1/2}} = x — 2{x^{1/2}} + }$$ $${ + 1 + 2{x^{1/2}} = x + 1.}$$

№ 2.13 Өрнекті ықшамдаңыз: $\left( {\dfrac{1}{{\sqrt a + \sqrt {a + 1} }} + \dfrac{1}{{\sqrt a — \sqrt {a — 1} }}} \right):\left( {1 + \sqrt {\dfrac{{a + 1}}{{a — 1}}} } \right)$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{a \ge 0}\\{\sqrt a — \sqrt {a — 1} \ne 0,}\\{\dfrac{{a + 1}}{{a — 1}} \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{lllllllllllllll}{a \ge 0,}\\{a \gt 1}\end{array} \Leftrightarrow a \gt 1.} \right.} \right.$ X — бірінші жақшадағы ал, Y өрнек болсын. $${X = \dfrac{1}{{\sqrt a + \sqrt {a + 1} }} + \dfrac{1}{{\sqrt a — \sqrt {a — 1} }} = \dfrac{{\sqrt a — \sqrt {a — 1} + \sqrt a + \sqrt {a + 1} }}{{(\sqrt a + \sqrt {a + 1} )(\sqrt a — \sqrt {a — 1} )}} = }$$ $${ = \dfrac{{2\sqrt a + \sqrt {a + 1} — \sqrt {a — 1} }}{{a + \sqrt {a(a + 1)} — \sqrt {a(a — 1)} — \sqrt {(a — 1)(a + 1)} }}{\rm{; }}}$$ $${Y = 1 + \dfrac{{\sqrt {a + 1} }}{{\sqrt {a — 1} }} = \dfrac{{\sqrt {a + 1} + \sqrt {a — 1} }}{{\sqrt {a — 1} }}.}$$ Онда $${X:Y = \dfrac{{2\sqrt a + \sqrt {a + 1} — \sqrt {a — 1} }}{{a + \sqrt {a(a + 1)} — \sqrt {a(a — 1)} — \sqrt {(a — 1)(a + 1)} }}:\dfrac{{\sqrt {a + 1} + \sqrt {a — 1} }}{{\sqrt {a — 1} }} = }$$ $${ = \dfrac{{\sqrt {a — 1} (2\sqrt a + \sqrt {a + 1} — \sqrt {a — 1} )}}{{a\sqrt {a + 1} + a\sqrt a + \sqrt a — a\sqrt {a — 1} — \sqrt {a — 1} + a\sqrt {a — 1} — a\sqrt a + \sqrt a — a\sqrt {a + 1} + \sqrt {a + 1} }} = }$$ $${ = \dfrac{{\sqrt {a — 1} (2\sqrt a + \sqrt {a + 1} — \sqrt {a — 1} )}}{{2\sqrt a + \sqrt {a + 1} — \sqrt {a — 1} }} = \sqrt {a — 1} {\rm{. }}}$$

№ 2.14 Өрнекті ықшамдаңыз: $\dfrac{{x — y}}{{{x^{3/4}} + {x^{1/2}}{y^{1/4}}}} \cdot \dfrac{{{x^{1/2}}{y^{1/4}} + {x^{1/4}}{y^{1/2}}}}{{{x^{1/2}} + {y^{1/2}}}} \cdot \dfrac{{{x^{1/4}}{y^{ — 1/4}}}}{{{x^{1/2}} — 2{x^{1/4}}{y^{1/4}} + {y^{1/2}}}}$

Шешуі: $\left\{ {\begin{array}{lllllllllllllll}{x \ge 0}\\{y \ge 0}\\{x \ne y}\end{array}} \right.$ $${\dfrac{{x — y}}{{{x^{3/4}} + {x^{1/2}}{y^{1/4}}}} \cdot \dfrac{{{x^{1/2}}{y^{1/4}} + {x^{1/4}}{y^{1/2}}}}{{{x^{1/2}} + {y^{1/2}}}} \cdot \dfrac{{{x^{1/4}}{y^{ — 1/4}}}}{{{x^{1/2}} — 2{x^{1/4}}{y^{1/4}} + {y^{1/2}}}} = }$$ $${ = \dfrac{{x — y}}{{\sqrt[4]{{{x^3}}} + \sqrt[4]{{{x^2}}}\sqrt[4]{y}}} \cdot \dfrac{{\sqrt[4]{{{x^2}}}\sqrt[4]{y} + \sqrt[4]{x}\sqrt[4]{{{y^2}}}}}{{\sqrt x + \sqrt y }} \cdot \dfrac{{\sqrt[4]{x}}}{{\sqrt[4]{y}\left( {\sqrt[4]{{{x^2}}} — 2\sqrt[4]{x}\sqrt[4]{y} + \sqrt[4]{{{y^2}}}} \right)}} = }$$ $${ = \dfrac{{x — y}}{{\sqrt[4]{{{x^2}}}(\sqrt[4]{x} + \sqrt[4]{y})}} \cdot \dfrac{{\sqrt[4]{x}\sqrt[4]{y}(\sqrt[4]{x} + \sqrt[4]{y})}}{{\sqrt x + \sqrt y }} \cdot \dfrac{{\sqrt[4]{x}}}{{\sqrt[4]{y}{{(\sqrt[4]{x} — \sqrt[4]{y})}^2}}} = }$$ $${ = \dfrac{{x — y}}{{(\sqrt x + \sqrt y ){{(\sqrt[4]{x} — \sqrt[4]{y})}^2}}} = \dfrac{{(\sqrt x — \sqrt y )(\sqrt x + \sqrt y )}}{{(\sqrt x + \sqrt y ){{(\sqrt[4]{x} — \sqrt[4]{y})}^2}}} = }$$

№ 2.15 Өрнекті ықшамдаңыз: $\sqrt[n]{{{y^{\dfrac{{2n}}{{m — n}}}}}}:\sqrt[m]{{\dfrac{{{{(m — n)}^2} + 4mn}}{{{m^2} — {n^2}}}}}$

Шешуі: ММЖ: $\left\{ {\begin{array}{lllllllllllllll}{m \ne \pm n,}\\{y \ne 0,}\\{y \gt 0{\rm{ }}{\rm{, }}m = 2k.}\end{array}} \right.$ $$\sqrt[n]{{\dfrac{{2n}}{{{y^{m — n}}}}}}:\sqrt[m]{{\dfrac{{{{(m — n)}^2} + 4mn}}{{{m^2} — {n^2}}}}} = {y^{\dfrac{{2n}}{{n(m — n)}}}}:{y^{\dfrac{{{m^2} — 2mn + {n^2} + 4mn}}{{m(m + n)(m — n)}}}} = $$ $$ = {y^{\dfrac{2}{{m — n}}}}:{y^{\dfrac{{{m^2} + 2mn + {n^2}}}{{m(m + n)(m — n)}}}} = {y^{\dfrac{2}{{m — n}}}}:{y^{\dfrac{{{{(m + n)}^2}}}{{m(m + n)(m — n)}}}} = {y^{\dfrac{2}{{m — n}}}}:{y^{\dfrac{{m + n}}{{m(m — n)}}}} = $$ $$ = {y^{\dfrac{2}{{m — n}} — \dfrac{{m + n}}{{m(m — n)}}}} = {y^{\dfrac{{2m — m — n}}{{m(m — n)}}}} = {y^{\dfrac{{m — n}}{{m(m — n)}}}} = {y^{\dfrac{1}{m}}} = \sqrt[m]{y}.$$

 

Жазба сіз үшін қаншалықты қажет болды?

Жұлдызшаның үстінен басыңыз!

Сіз бұл жазбаны қажетті деп таптыңыз...

Әлеуметтік желіде бөлісіңіз!

Бұл жазбаның сіз үшін қажетті болмағаны өкінішті!

Жазбамызды жақсартайық!

Жазбаны жақсартуға қандай ұсыныс айтар едіңіз?

Осы тақырыптағы посттар

Пікір қалдыру

Сіздің электронды почтаңыз жарияланбайды, Міндетті жолдарды толтырыңыз. Формула теру үшін \$\$ ішіне жазыңыз