Сандық өрнектерді тепе-тең түрлендіру (Рустюмова 1.1.6)

()

 +/-  - Есептің жауабын көрсету/көрсетпеу.

▲/▼ - Жауап орнын жасыру/шығару

   ×    - Сұрақты алып тастау.

Құрамында радикалдары бар сандық өрнектерді түрлендіріп, амалдарды орындаңыз.

№ 1 Есептеңіз: ${\sqrt {252} - \sqrt {700} + \sqrt {1008} - \sqrt {448} }$

Шешуі: $${\sqrt {36 \cdot 7} - \sqrt {100 \cdot 7} + \sqrt {144 \cdot 7} - \sqrt {64 \cdot 7} = }$$ $${ = 6\sqrt 7 - 10\sqrt 7 + 12\sqrt 7 - 8\sqrt 7 = 0}$$

№ 2 Есептеңіз: $\sqrt {28} - \sqrt {1,75} - \sqrt {15,75} $

Шешуі: $$ = \sqrt {4 \cdot 7} - \sqrt {\frac{1}{4} \cdot 7} - \sqrt {\frac{9}{4} \cdot 7} = 2\sqrt 7 - \frac{1}{2}\sqrt 7 - \frac{3}{2}\sqrt 7 = 0$$

№ 3 Есептеңіз: $2\sqrt {18} + 3\sqrt 8 + 3\sqrt {32} - \sqrt {50} $

Шешуі: $$ = 2\sqrt {9 \cdot 2} + 3\sqrt {4 \cdot 2} + 3\sqrt {16 \cdot 2} - \sqrt {25 \cdot 2} = 6\sqrt 2 + 6\sqrt 2 + 12\sqrt 2 - 5\sqrt 2 = 19\sqrt 2 $$

№ 4 Есептеңіз: ${\sqrt {49} + {{(\sqrt {66} )}^2} - \sqrt {{{( - 5)}^2}} }$

Шешуі: $${7 + 66 - 5 = 68}$$

№ 5 Есептеңіз: $3 \cdot \sqrt {\frac{1}{{27}}} - \frac{5}{6} \cdot \sqrt {27} - 0,1 \cdot \sqrt {75} + 2 \cdot \sqrt {\frac{1}{3}} $

Шешуі: $$ = 3 \cdot \frac{1}{3} \cdot \sqrt {\frac{1}{3}} - \frac{5}{6} \cdot 3\sqrt 3 - 0,1 \cdot 5\sqrt 3 + 2\sqrt {\frac{1}{3}} = $$ $$ = 3\sqrt {\frac{1}{3}} - \frac{5}{2}\sqrt 3 - \frac{1}{2}\sqrt 3 = 3\sqrt {\frac{1}{3}} - 3\sqrt 3 = $$ $$ = \sqrt {\frac{9}{3}} - 3\sqrt 3 = \sqrt 3 - 3\sqrt 3 = - 2\sqrt 3 $$

№ 6 Есептеңіз: $3 \cdot \sqrt {1,44} - {(0,3 \cdot \sqrt 7 )^2}$

Шешуі: $$ = 3 \cdot 1,2 - 0,09 \cdot 7 = 3,6 - 0,63 = 2,97$$

№ 7 Есептеңіз: $(10\sqrt {48} - 6\sqrt {27} + 4\sqrt {12} ):\sqrt 3 $

Шешуі: $$ = (10 \cdot 4\sqrt 3 - 6 \cdot 3\sqrt 3 + 4 \cdot 2\sqrt 3 ):\sqrt 3 = 40 - 18 + 8 = 30$$

№ 8 Есептеңіз: ${(15\sqrt {50} + 5\sqrt {200} - 3\sqrt {450} ):\sqrt {10} }$

Шешуі: $${ = 15\sqrt {\frac{{50}}{{10}}} + 5\sqrt {\frac{{200}}{{10}}} - 3\sqrt {\frac{{450}}{{10}}} = 15\sqrt 5 + 5\sqrt {20} - 3\sqrt {45} = }$$ $${ = 15\sqrt 5 + 10\sqrt 5 - 9\sqrt 5 = 16\sqrt 5 }$$

№ 9 Есептеңіз: ${2\sqrt {40\sqrt {12} } + 3\sqrt {5\sqrt {48} } - 2 \cdot \sqrt[4]{{75}} - 4\sqrt {15\sqrt {27} } }$

Шешуі: $${ = 2\sqrt {40 \cdot 2\sqrt 3 } + 3\sqrt {5 \cdot 4\sqrt 3 } - 2\sqrt {\sqrt {75} } - 4\sqrt {15 \cdot 3\sqrt 3 } = }$$ $${ = 2 \cdot 4\sqrt {5\sqrt 3 } + 3 \cdot 2 \cdot \sqrt {5\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 4 \cdot 3\sqrt {5\sqrt 3 } = }$$ $${ = 8\sqrt {5\sqrt 3 } + 6\sqrt {5\sqrt 3 } - 2\sqrt {5\sqrt 3 } - 12\sqrt {5\sqrt 3 } = 0}$$

№ 10 Есептеңіз: ${\frac{3}{2} \cdot \sqrt {\frac{2}{3}} - 3 \cdot \sqrt {\frac{1}{6}} - 1,7 \cdot \sqrt 6 - 4 \cdot \sqrt {1,5} + 3,7 \cdot \sqrt 6 }$

Шешуі: $${ = \sqrt {\frac{{18}}{{12}}} - \sqrt {\frac{9}{6}} + 2\sqrt 6 - 4\sqrt {\frac{3}{2}} = }$$ $${ = \sqrt {\frac{3}{2}} - \sqrt {\frac{3}{2}} + 2\sqrt {1,5 \cdot 4} - 4\sqrt {1,5} = }$$ $${ = 4\sqrt {1,5} - 4\sqrt {1,5} = 0}$$

 

Жазба сіз үшін қаншалықты қажет болды?

Жұлдызшаның үстінен басыңыз!

Сіз бұл жазбаны қажетті деп таптыңыз...

Әлеуметтік желіде бөлісіңіз!

Бұл жазбаның сіз үшін қажетті болмағаны өкінішті!

Жазбамызды жақсартайық!

Жазбаны жақсартуға қандай ұсыныс айтар едіңіз?

Осы тақырыптағы посттар

Пікір қалдыру

Сіздің электронды почтаңыз жарияланбайды, Міндетті жолдарды толтырып шығыңыз.