The equation of the line
hrough (3,1) that is
parallel to
$$y=-2x^{2}+\frac{5-x}{x}$$
 at $x=1$
The equation of the line
hrough (3,1) that is
parallel to $y=5-2x$
The equation of the line
hrough (1,1) that is
parallel to $y=5-2x$
Equ. of langest at (-1,3,5) is
 $y=x+4.5$ $2y=x+5$ The equation of the line
points (-1,2) and (11,8) $y+2x=7$
The equation of the line
hrough (3,-1) that is
perpendicular to $y=5-2x$
 $y=-x+2.5$ Curve C has equation $y=(0)$
 $y=x+2x=7$
The equation of the line
hrough (3,-1) that is
perpendicular to $y=5-2x$
 $y=-x+2.5$ Curve C has equation $y=(0)$
 $y=x+20$ The equation of
the normal to:
 $y=4x+3x^{2}-2x^{2}$ at $(x,3)$ $y=x+7$

					y+2x=20
3y + x = 25	3y=x-1	The equation of the normal to the curve $y=(x-1)(x^2-4)$ at (1,0)	The equation of the tangent to: $y=4x+3x^{\frac{3}{2}}-2x^{2}$ at (4,8)	y + 3x = 20	The line thro' (10,0) that is perpendicular to the line joining $(-1,2)$ and $(11,8)$

The equation of the tangent to the curve $y=(x-1)(x^2-4)$ at (-1,6)